If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5.3x+1=0
a = 1; b = 5.3; c = +1;
Δ = b2-4ac
Δ = 5.32-4·1·1
Δ = 24.09
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5.3)-\sqrt{24.09}}{2*1}=\frac{-5.3-\sqrt{24.09}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5.3)+\sqrt{24.09}}{2*1}=\frac{-5.3+\sqrt{24.09}}{2} $
| (2-2x)^2=-4 | | 2(4x+2)=6x+9 | | Y=10x+280 | | x-2+x=x+42 | | 3(2x-9)=-8x+23+4x | | 4(2x-3)=5x+33 | | 2x+½=-5 | | (2a-5)=14. | | 46=-2x+18+9x | | (x*x)+10x+24=0 | | 4(2x-3)=-68 | | 5/13=v/12 | | 3c-1=-7 | | z+99=907 | | 2(3–x)–12+4x= | | 7/8+c=3/4 | | (x+8)=21x= | | 3(x+6)=2(3x+3) | | 180-a=12 | | –78=6w–12 | | 0=0.8h+12 | | 29=n/13 | | -18=0.5x | | 3=2u–7 | | ƒ(x)=2x-15 | | x+9.4=-11.7 | | 559=13h | | 7x+23=3x-25 | | 6b+54=180 | | 139=106+5x+39 | | -100=12x-4 | | 3(w+6)=18 |